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To enhance the prediction accuracy of landslides in in Longyan City, China, this study developed a
methodology for geologic hazard susceptibility assessment based on a coupled model composed of a
Geographic Information System (GIS) with integrated spatial data, a frequency ratio (FR) model, and a
random forest (RF) model (also referred to as the coupled FR-RF model). The coupled FR-RF model was
constructed based on the analysis of nine influential factors, including distance from roads, normalized
difference vegetation index (NDVI), and slope. The performance of the coupled FR-RF model was
assessed using metrics such as Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves,
yielding Area Under the Curve (AUC) values of 0.93 and 0.95, which indicate high predictive accuracy
and reliability for geological hazard forecasting. Based on the model predictions, five susceptibility levels
were determined in the study area, providing crucial spatial information for geologic hazard prevention
and control. The contributions of various influential factors to landslide susceptibility were determined
using SHapley Additive exPlanations (SHAP) analysis and the Gini index, enhancing the model
interpretability and transparency. Additionally, this study discussed the limitations of the coupled FR-RF
model and the prospects for its improvement using new technologies. This study provides an innovative
method and theoretical support for geologic hazard prediction and management, holding promising
prospects for application.

©2024 China Geology Editorial Office.

1. Introduction

attracted significant academic interest, aimed at predicting the
spatial probability distribution of landslides to support the risk

Landslides emerge as one of the most common geologic
hazards, causing numerous casualties and property losses
every year (Ali R et al., 2020). Their disastrous consequences
have impelled relevant researchers worldwide to actively
develop methods for predicting the potential locations of
landslides to mitigate these impacts (Peduto D et al., 2018;
Meena SR et al., 2022). As a result, landslide susceptibility
assessment models with high accuracy and reliability have
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assessment and prevention of regional landslides (Chen Z and
Song DQ, 2023; Huang FM et al., 2024).

Over the past few decades, numerous models for landslide
susceptibility assessment have been developed, including the
analytic hierarchy process (Regmi AD et al., 2014), the
weight of evidence approach (Abraham MT et al., 2021), the
information value and frequency ratio method, and machine
learning models like logistic regression, support vector
machines (SVMs), and RF (Wang HB et al., 2005). In recent
years, machine learning models have become prominent due
to their high accuracy compared to traditional heuristic and
statistical models (Reichenbach P et al., 2018; Achour Y and
Pourghasemi HR, 2020). These models can automatically
analyze the contributions of various influencing factors
(Youssef AM and Pourghasemi HR, 2021). However, their
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evaluation results often lack clarity, making it challenging to
delineate the specific roles of different factors. While machine
learning models can achieve high predictive accuracy without
human intervention, statistical models excel at correlating
with influencing factors. Therefore, combining machine
learning and statistical models can help mitigate the
limitations of both approaches and enhance overall prediction
accuracy. Recently, coupled models that integrate multiple
statistical methods or machine learning algorithms have been
widely applied in landslide susceptibility assessments.
Additionally, some researchers have explored coupled
models, which combine multiple models and leverage their
interdependencies to enhance assessment accuracy and
generalizability (Zhao Z et al., 2021). Arabameri A et al.
(2019) assessed the landslide sensitivity and risk of the
Santalar Mountains watershed in Mazandaran Province, Iran,
using statistical and artificial intelligence models like the FR-
RF model, along with digital elevation models (DEMs) of
different spatial resolutions. The results indicate that the FR-
RF model exhibited high accuracy (0.917) in predicting
landslide occurrence. He WC et al. (2023) analyzed the
occurrence of landslides in Weixin County. Using models,
researchers assessed the landslide risk while considering
various environmental factors like terrain, geology,
meteorology, and land cover. They found that coupled models
(combining different methods) were more accurate than single
models, especially the FR-RF model, which had an accuracy
of up to 94.9%. These studies highlight the significant
advantages of integrating the Frequency Ratio model with the
Random Forest model into a coupled framework. The
Frequency Ratio is a straightforward and effective statistical
method that intuitively quantifies the relationship between
various influencing factors and landslide occurrence. Its
transparent and easily understandable calculation process
makes it suitable for the preliminary selection of key factors,
providing a solid statistical foundation for the model (Pandey
VK et al., 2020). In contrast, Random Forest is a robust
machine learning algorithm adept at handling high-
dimensional data and capturing complex nonlinear
relationships. By constructing multiple decision trees and
aggregating their votes, it significantly enhances the model
predictive power and stability. Moreover, Random Forest
effectively manages missing values and noise, allowing the
model to perform robustly under diverse environmental
conditions. By combining the Frequency Ratio and Random
Forest, this study can leverage the strengths of both: the
Frequency Ratio provides valuable assessments of influencing
factors, while Random Forest enhances predictive capabilities
by learning complex data patterns. This complementarity not
only improves the model predictive performance but also
increases the credibility of the assessment results (Wang YL
et al., 2024).

In addition, the accurate extraction of non-landslide points
is an essential component in building a coupled model. The
correct and reasonable selection of non-landslide points
significantly impacts the accuracy and reliability of regional

landslide susceptibility models (Huang FM et al., 2020).
Optimizing the selection process for non-landslide points can
also help mitigate the issue of model overfitting (Zhu AX et
al., 2018). Currently, most researchers utilize a random
selection method to extract non-landslide points (Pereira FF et
al., 2023; Li MX et al., 2024). A major drawback of this
approach is the risk of selecting non-landslide points from
areas that may experience landslides in the future. For
instance, Choi attempted to randomly select non-landslide
points from areas with a slope of 0; however, the evaluation
results indicated that the contribution of the slope factor was
significantly greater than that of other factors (Choi J et al.,
2012). Kavzoglu T et al. (2014) employed high-resolution
Google Earth imagery to analyze low-slope areas, such as
rivers and valleys, in the study area, selecting non-landslide
points from these regions. While this method ensures the
stability of non-landslide points, it may either exaggerate or
downplay the contribution of the slope factor to the
susceptibility model. Liu LL et al. (2022) initially evaluated
the study area using the frequency ratio method and then
randomly selected non-landslide points from areas
categorized as extremely low and low susceptibility.
Comparative results demonstrated a significant improvement
in the accuracy of the refined model.

Despite the impressive performance of machine learning
models in enhancing the accuracy of landslide susceptibility
assessments, concerns regarding their “black-box” nature and
model interpretability have emerged (Ozturk U et al., 2021).
Some studies have addressed this issue by calculating the
importance of influencing factor features using the Gini index
(Sajadi P et al., 2022; Shahabi H et al., 2023). While this
method helps identify key features that significantly impact
model predictions, it does not quantify the specific influence
of each feature on the target value or indicate whether the
impact is positive or negative. The interpretability of a model
is crucial to the decision-making process, contributing to the
development of various interpretation algorithms such as
partial dependence plot (PDP), individual conditional
expectation (ICE), local interpretable model-agnostic
explanations (LIME), and SHAP (Pradhan B et al., 2023).
SHAP, introduced into the field of machine learning by
Lundberg SM in 2020 (Lundberg SM et al., 2020), is an
innovative interpretability model that employs the Shapley
value principle from game theory to accurately evaluate the
average contribution of each feature to model predictions. In
landslide susceptibility assessment, SHAP effectively
quantifies the importance of each influencing factor and their
interdependencies, revealing the primary controlling factors
and coupling mechanisms of regional landslides. This
provides a fresh perspective for understanding the dynamics
of landslide occurrence (Chen Z et al., 2023). The SHAP
algorithm, known for its simplicity and broad applicability,
quantifies the importance and contributions of factors both
globally and locally, providing valuable interpretative insights
for the application of machine learning models (Ekmekcioglu
O and Koc K, 2022; Zhou XZ et al., 2022; Zhang JY et al,,
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2023). However, the application of SHAP in landslide
susceptibility research is still in its infancy. Strengthening the
exploration of its wuncertainties and enhancing its
interpretability are important directions for current research.

In this study, the authors adopt a coupled model that
integrates the Frequency Ratio and Random Forest models to
simulate landslide occurrences in Longyan City. The authors
also construct independent Random Forest models for
comparison to verify the accuracy of the coupled model. The
objectives of this study are twofold: (1) to develop a coupled
model for assessing landslide susceptibility in Longyan City,
and (2) to explore the interpretability of machine learning
models. By analyzing 646 landslide points and nine
influencing factors, the authors evaluate the model predictive
performance using metrics such as precision, recall, F1 score,
Kappa coefficient (KC), Overall Accuracy (OA), Brier score,
Receiver Operating Characteristic (ROC) curve, and
Precision-Recall (PR) curve. For the analysis of model
interpretability, the authors employ the SHAP algorithm and
Gini Index.

2. Materials and Methods
2.1. Study area

Longyan City, located in the hilly region comprising
middle and low hills in western Fujian Province (Fig. 1),
covers an area of approximately 19000 km2, with mountains
and hills representing 78.6% of the total area. Under the
influence of multi-stage tectonic activity and large-scale
magma intrusion, this city exhibits complex geologic
structures including well-developed folds and faults. It has a
subtropical monsoon climate characterized by heavy and
concentrated rainfall. Besides, it is characterized by a steep
lithospheric slope and poor stability. All these establish the
study area as a hotbed for geologic hazards.

116°E 117°E

26°N+

25°N+

= Major location
° Landslide point
Il [ ongyan city
Elevation/m
wm 1785.75
551

0 10203040 km

Fig. 1. Geological sketch of Longyan City.

2.2. Database

2.2.1. Influencing factors

Factors suitable to wuse in landslide susceptibility
assessment remain controversial. Based on previous studies
(Huang FM et al., 2017; Zhou C et al., 2022) and the specific
conditions of the study area, this study selected nine
influential  factors related to topography, geology,
meteorology and hydrology, human activities, and vegetation
cover (Table 1) : elevation, slope, aspect, lithology, distances
from faults, rivers, and roads, average annual rainfall, and
NDVI. Fig. 2 depicts nine thematic layers of influential
factors, with a pixel size of 3030 m. Among the nine
influential factors, the rainfall was set at the average annual
rainfall in Longyan City from 2013 to 2022. The impacts of
various influential factors on landslide occurrence have been
extensively explained previously (Achu A et al., 2023; Dai
XL et al., 2023).

2.2.2. Preparation of sample dataset

This study obtained the landslide inventory data from the
Resource and Environment Science and Data Center of the
Chinese Academy of Sciences (https://www.resdc.cn). These
data have been validated and widely recognized for their
reliability (Yao KZ et al., 2022; Yuan R and Chen J, 2022). A
total of 646 landslides were recorded in the study area.
Building on previous findings, this paper employs the
frequency ratio model for the initial susceptibility assessment.
Subsequently, 646 non-landslide points were randomly
selected from areas classified as having extremely low and
low susceptibility to serve as negative samples for the

Table 1. Influential factors and landslide points used in this
study.
Category Evaluation Source
factor
Topography Elevation 30 m resolution DEM data for
Slope Longyan City from Geospatial Data
Aspect Cloud (http://www.gscloud.cn)
Geology Lithology National geological data Museum
Distance from  (https://www.ngac.cn/125cms/c/qggne
faults w/index.htm) (Li CY et al., 1957; Li
CY etal., 2019)
Meteorology Average annual National Tibetan Plateau Data Center

rainfall (https://data.tpdc.ac.cn/zh-
hans/data/faae7605-a0{2-4d18-b28f-
Scee413766a2) (Ding YX and Peng
SZ, 2020; Peng SZ, 2020; Peng SZ et
al., 2019; Peng SZ et al., 2017; Peng
SZ etal., 2018)
Distance from  National Platform for Common
rivers Geospatial Information Services
(https://www.tianditu.gov.cn/)

and hydrology

Human Distance from  National Platform for Common

activities roads Geospatial Information Services
(https://www.tianditu.gov.cn/)

Vegetation NDVI National Ecosystem Science Data

(http://www.nesdc.org.cn/sdo/detail 7id=
60f68d757¢2817410e7d8d49) (Dong
JW etal., 2021; Yang JL et al., 2019)
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Fig. 2. Influential factors of landslides. (a) Elevation; (b) Slope; (c) Aspect; (d) Lithology: 1. Intrusion; 2. Sandstone and siltstone; 3. Strata
bearing mudstones, shales, and coals; 4. Loose sediments; 5. Carbonate rock; 6. Metamorphic rock; (e) Distance from faults; (f) Average annu-

al rainfall; (g) Distance from rivers; (h) Distance from roads; (i) NDVL

Random Forests Model.
2.3. Methods

2.3.1. Modeling

The modeling process for landslide susceptibility
assessment consisted of five steps (Fig. 3): (1) Influential
factors were screened. Appropriate influential factors were
selected based on previous studies and the specific conditions
of the study area. Then, these factors were screened for
assessment through the correlation analysis; (2) The sample
dataset was established. Positive samples (landslide points)
can be collected from field surveys, Google imagery, relevant
departments, and related websites. Negative samples (non-
landslide points) were selected using a FR model, rather than

random generation, for an initial assessment of the study area.
Then, based on the assessment results, non-landslide points,
equal in numbers to the positive samples, were randomly
selected from identified zones with very low and low
susceptibility to form prediction samples. All samples were
divided into a training set and a test set at a ratio of 7 : 3;
(3) The model was trained. The dataset composed of
influential factors and positive/negative samples was put into
the coupled FR-RF model for model training; (4) The coupled
FR-RF model was assessed using various metrics; (5) The
trained model was used to map landslide susceptibility in the
study area and conduct statistical analysis.

2.3.2. Multicollinearity analysis of predictors
For landslide susceptibility assessment using machine
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Fig. 3. Modeling process for landslide susceptibility assessment.

learning methods, it is necessary to ensure the independence
of influential factors. Feature selection is a crucial step in
machine learning, aimed at reducing the overfitting possibility
and improving the generalization capability by eliminating
redundant and less useful variables (Kumar C et al., 2023).
The multicollinearity of influential factors it may lead to
overfitting or underfitting problems (Dou J et al., 2015; Pham
BT et al., 2018). The variance inflation factor (VIF) is a
general index of multicollinearity, and the equation is as
follows:

1

IF=——
VIF=1"%

where R? is the coefficient of determination, representing the
degree of fitting of the model obtained using linear regression
to a sample. 0 < VIF <10, 10< VIF <100, and VIF > 100
denote no, high, and severe multicollinearity, respectively.

Another criterion for testing the multicollinearity of
influential factors is the tolerance (TOL), which is the
reciprocal VIF value and can be calculated as follows:

1

TOL=——
OL=Vir

The TOL represents the amount of variation in the
selected influential factor explained by other influential
factors. TOL < 0.1 and TOL > 0.1 suggest the presence and
absence of multicollinearity between factors, respectively.

2.3.3. Coupled FR-RF model

A coupled model integrates the advantages of two or more
models, thereby effectively enhancing the prediction accuracy
(Yuan XY et al., 2022). To assess landslide susceptibility, this
study used a coupled model combining the FR and the RF
models.

The FR can be defined as the ratio of the percentage of
disaster grid cells within a specific factor classification
interval to the percentage of grid cells of the classification
interval in the entire study area (Lee S and Pradhan B, 2007).
It can be calculated as follows:

F,JF
FR="
C,/C

where F; is the number of disaster grid cells within a specific
factor classification interval; F' is the total number of disaster
grid cells in the study area; C; is the number of grid cells in
the specific factor classification interval, and C indicates the
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total number of grid cells in the study area.

The RF, based on decision trees and bagging, is an
ensemble learning algorithm proposed by Breiman L (2001).
The RF model exhibits fewer errors under a larger sample
size, many assessment factors, and a low possibility of
overfitting (Li MX et al., 2024) and, thus, can effectively
identify and capture the importance of variables. Furthermore,
this model shows high tolerance to outliers and noise in the
dataset. All these establish this model as the best machine
learning model currently (Ghorbanzadeh O et al., 2019;
Shahzad N et al., 2022). Compared to other machine learning
models, the RF model enables more accurate landslide
susceptibility assessment (Liu MY et al., 2023; Youssef AM
et al., 2016). Besides, the RF model can avoid overfitting by
controlling the number of decision trees (Catani F et al.,
2013).

The specific workflow of the coupled FR-RF model is as
follows: First, the sensitivity values of the influential factors
were calculated using the FR model. These values were then
used as classification data for the FR model. Besides, the FR
model was also used as a prior model for an initial landslide
susceptibility assessment. Based on the assessment results,
646 non-landslide points were randomly selected from zones
with very low and low susceptibility levels. These non-
landslide points served as negative samples for the FR model.
Finally, 646 landslide points and 646 non-landslide points
were divided into training and test data a ratio of 7 . 3. The
training data were used to build the landslide susceptibility
assessment model, while the test data were utilized to validate
the model’s prediction accuracy.

2.3.4. Model accuracy evaluation

The confusion matrix provides a comprehensive and
quantitative assessment of the performance of a classification
model (Chen W et al., 2018). Based on the confusion matrix
(Fig. 4), metrics such as precision, recall, F1-score, Kappa
coefficient (KC), overall accuracy (OA), brier score, the
Receiver Operating Characteristic (ROC) curve and the
Precision-Recall (PR) curve can be calculated (Goetz J et al.,
2015; Sun DL et al., 2021).

Precision is the proportion of true positive (TP)
predictions among all samples predicted as positive:

TP
TP + FP

Precision =

Recall refers to the proportion of true positive (TP)
predictions relative to all actual positive samples (TP + FN):

TP
Recall =
TP +FN
Category Positive Negative
Positive Ture positive (TP) | False positive (FP)
Predictions
Negative | False negative (FN) | Ture negative (TN)

Fig. 4. Confusion matrix.

The F1 is defined as the harmonic mean of precision and
recall, serving as a comprehensive assessment metric. It can
be calculated as follows:

Fl = 2 X Precision X Recall

Precision + Recall

The KC is a measure of consistency and classification
performance. It is calculated based on the confusion matrix,
ranging from —1 to 1 and typically above 0. A more
unbalanced confusion matrix suggests a lower KC value,
effectively penalizing models biased towards certain classes.
It can be calculated as follows:

_ (TP+FN)+ (TP +FP) + (TN +FN) + (TN + FP)
- (TP + TN + FP + FN)?

Pe

Pp—Pe
1-Pe

Kappa =

OA is defined as the proportion of correct judgments
among all judgments made, representing the accuracy of the
model in classifying landslides and non-landslides.
Specifically, it counts correct classifications as positive and
incorrect classifications as negative:

TP+ TN

OA =
TP+TN+FP+FN

The brier score is a metric used to assess the accuracy of
probability predictions, particularly in binary classification
problems. It measures model performance by calculating the
mean squared difference between predicted probabilities and
actual outcomes. The brier score ranges from 0 to 1, with
values closer to 0 indicating higher predictive accuracy.
Generally, a brier score below 0.25 is considered good,
particularly in the context of imbalanced datasets.

ROC curves are extensively used to assess the overall
performance of a model. The x-axis represents the false
positive rate (FPR), which corresponds to specificity. FPR
indicates the proportion of actual negative samples that are
incorrectly classified as positive by the classifier. The y-axis
represents the true positive rate (TPR), also known as
sensitivity or recall. TPR indicates the proportion of actual
positive samples that are correctly classified as positive by the
classifier. The ROC curve can be plotted based on the
confusion matrix, with x- and y-axes denoting FPR and TP,
respectively. FPR and TPR can be calculated as follows:

FPR = il
TN +FP
TP
TPR =
TP+FN

FPR represents the ratio of negative samples incorrectly
classified as positive to the total number of negative samples,
while TPR (True Positive Rate) indicates the ratio of positive
samples correctly predicted as positive to the total number of
positive samples.
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A ROC curve closer to the y-axis suggests higher
predictive performance of the model. In landslide
susceptibility assessment using the ROC curve, the area
enclosed by the ROC curve and the x-axis (AUC) is typically
used to measure the model's prediction accuracy. The AUC
values range from 0 to 1, with values closer to 1 indicating
higher model performance. Generally, AUC values above 0.8,
between 0.7 and 0.8, and below 0.7 suggest good, fair, and
poor model prediction, respectively. A value of 0.5 represents
random guessing.

The Precision-Recall (PR) curve is another important tool
for evaluating model performance. This curve plots Recall on
the horizontal axis and Precision on the vertical axis. Recall
measures the proportion of all positive samples correctly
predicted by the model, while Precision reflects the proportion
of truly positive samples among all samples predicted as
positive. Ideally, the closer the PR curve is to the upper right
corner, the better the model classification effectiveness,
highlighting its ability to distinguish between positive and
negative samples.

3. Result
3.1. The grading of influencing factors and frequency ratios

In this study, nine influential factors were selected for
grading. Their FRs were calculated using the FR method
(Table 2). Elevation was divided into five natural intervals.
An increased elevation corresponded to gradually decreased
FRs. The results reveal that 46% of landslides were
concentrated at elevations ranging from 82 to 409 m. Slope
was divided into six grades. Slopes ranging from 0° to 30°
accounted for nearly 90% of landslides, whereas zones steeper
than 50° experienced no landslides. Aspect exerted
insignificant impacts on landslides since landslides occured in
various directions. Concerning lithology, 46.7% of landslides
occurred in intrusions, indicating that these rocks are more
prone to landslides. Distance from faults was divided into
seven levels, with 86.8% of landslides occurring within 3000
m of faults. A longer distance from faults was associated with
a lower proportion of landslides, highlighting the significant
impacts of distance from faults on landslide occurrence.
Average annual rainfall was divided into five levels, and its
increase resulted in gradually decreased FRs. Distances from
rivers and roads were both divided into seven levels, with
42.3% of landslides occurring within 1000 m of roads. Table 2
shows that the proportion of landslides increased gradually
with NDVI, indicating high landslide frequencies in zones
with dense vegetation cover.

3.2. Correlation analysis of influencing factors

In this study, multicollinearity was employed to analyze
the dependence of influential factors on each other. The
analytical results indicate that the VIF values ranged from
1.68 to 1.02 and the TOL values varied from 0.98 to 0.60
(Table 3). Given that VIF<10 and TOL>0.1 indicated the

absence of multicollinearity, all the nine influential factors
proved independent and thus can be used for landslide
susceptibility assessment.

3.3. Landslide susceptibility assessment

3.3.1. Model construction and evaluation

To verify the advantages of the coupled model, this study
selected a single Random Forest model for comparison. The
accuracy evaluation results in Table 4 show that the various
indicators of the coupled model significantly outperform those
of the single random forest model. According to the confusion
matrix, the coupled model achieves a precision of 0.89, a
recall of 0.88, an F1-score of 0.88, a kappa coefficient of 0.77,
an overall accuracy of 0.88, and a brier score of 0.11 (Table 4).
These favorable evaluation results indicate that the coupled
model performs well in probability prediction.

Similarly, the ROC and PR curves presented in Fig. 5
demonstrate the higher accuracy of the coupled model. Fig. 5
(a) displays the ROC curve, which is close to the upper left
corner and exhibits a smooth shape, indicating that the model
maintains a high true positive rate across various thresholds
while keeping the false positive rate low. This suggests that
the model is effective at distinguishing between positive and
negative instances when identifying landslide events, with an
area under the curve is 0.93, reflecting its strong predictive
capability for landslide susceptibility. The PR curve in Fig. 5
(b) is very close to the upper right corner, indicating that the
model maintains high precision alongside a high recall rate,
with an area under the curve is 0.95, further demonstrating its
effectiveness. This performance can serve as a valuable
reference for risk management strategies.

3.3.2. Distribution pattern of landslide susceptibility

This study conducted a probabilistic forecast of landslide
susceptibility across the study area using the coupled FR-RF
model, creating a susceptibility assessment map. Based on
geometric interval classification, the study area was
categorized into five susceptibility levels: very low, low,
moderate, high, and very high (Fig. 6).

The study area, with 646 landslides, was divided into
25842893 grid cells (Table 5). Zones with very low
susceptibility covered 22% of the total areca and eight
landslides (1%). Zones with low susceptibility manifested an
area proportion of 26% and 91 landslides (14%). Zones with
moderate susceptibility displayed an area proportion of 14%
and 106 landslides (16%). Zones with high susceptibility
displayed an area proportion of 14% and a landslide
percentage of 18% (115). Zones with very high susceptibility
covered 24% of the total area and 326 landslides (51%).
Zones with very high and high susceptibility exhibited a total
area proportion of 38% and 69% of landslides. A higher
landslide susceptibility level corresponded to a higher
landslide proportion, indicating a significant positive
correlation between both. Therefore, the assessment results
align highly with the actual conditions.
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Table 2. FR-derived spatial relationships between influential factors and landslides.

Factor Level Radio of landslides Ratio of domain FR
Elevation (m) 82409 0.460 0.285 1.611
409-594 0.283 0.298 0.949
594-804 0.167 0.225 0.743
804-1076 0.080 0.137 0.588
1076-1807 0.009 0.054 0.171
Slope (°) 0-10 0.300 0.206 1.458
10-20 0.402 0.386 1.044
20-30 0.237 0.302 0.785
30-40 0.053 0.092 0.572
40-50 0.008 0.014 0.570
>50 0.000 0.001 0.000
Aspect (°) Plane (1) 0.005 0.005 1.022
North (0-22.5&337.5-360) 0.116 0.120 0.970
Northeast (22.5-67.5) 0.125 0.114 1.102
East (67.5-112.5) 0.128 0.129 0.995
Southeast (112.5-157.5) 0.149 0.132 1.129
South (157.5-202.5) 0.169 0.126 1.344
Southwest (202.5-247.5) 0.118 0.125 0.939
West (247.5-292.5) 0.108 0.129 0.839
Northwest (292.5-337.5) 0.082 0121 0.678
Lithology intrusive rock 0.467 0.473 0.988
Sandstone and siltstone 0.229 0.231 0.994
Strata containing mudstone, shale, and coal 0.189 0.188 1.005
Loose sediments 0.031 0.013 2.302
Carbonate rock 0.010 0.006 1.580
Metamorphic rock 0.075 0.090 0.835
Distance from faults (m) 0-1000 0.451 0.471 0.957
10002000 0.225 0.235 0.956
2000-3000 0.192 0.163 1.177
3000-4000 0.064 0.063 1.005
4000-5000 0.034 0.037 0.922
5000-6000 0.023 0.022 1.081
> 6000 0.011 0.008 1.305
Annual average rainfall (mm) 1280-1447 0.259 0.162 1.597
1447-1520 0.276 0.217 1.270
1520-1589 0.286 0.315 0.910
1589-1673 0.152 0.227 0.667
1673-1881 0.028 0.079 0.353
Distance from rivers (m) 0-1000 0.060 0.045 1.334
10002000 0.036 0.048 0.747
2000-3000 0.045 0.045 1.008
3000-4000 0.034 0.034 1.008
4000-5000 0.073 0.061 1.194
5000-6000 0.050 0.053 0.930
> 6000 0.703 0.715 0.984
Distance from roads (m) 0-1000 0.423 0.276 1.529
1000-2000 0.119 0.191 0.624
2000-3000 0.116 0.148 0.784
3000-4000 0.111 0.114 0.978
4000-5000 0.051 0.086 0.595
5000-6000 0.056 0.061 0.910
> 6000 0.124 0.123 1.004
NDVI 0-0.45 0.033 0.020 1.602
0.45-0.67 0.119 0.036 3.322
0.67-0.80 0.224 0.094 2.380
0.80-0.87 0.407 0.397 1.024

0.87-1.00 0.217 0.452 0.479
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3.4. Interpretability analysis

Limited interpretability restricts the application of
machine learning models to landslide susceptibility
assessment (Zhou XZ et al., 2022), posing a significant threat
to relevant projects. Therefore, this study conducted model
interpretation using the SHAP algorithm and the Gini index.

A honeycomb plot (Fig. 7) is a method that combines the
magnitude and weights of feature values to visualize the
impacts of individual factors on assessment results (Wang D
et al., 2022). In this plot, each cell represents a SHAP value of
a feature. Labels show the names of features sorted by
importance. Each point in the honeycomb plot represents a
real sample. The colors of points are determined by feature
values, with red colors indicating high values. The size of the
central concave cross-section denotes the number of points
with the same SHAP value, corresponding to the magnitude
of features. The positions of feature values suggest the
contributions of various features to the assessment results. A
value closer to the right side of the plot facilitates the
outcome, while a value closer to the left inhibits it. Fig. 7
shows that distance from roads, NDVI, elevation, and rainfall
produced significant impacts on landslide occurrence.

SHAP values are more reliable compared to traditional
measures of feature importance (Al-Najjar HA et al., 2023).

Table 3. Multicollinearity analysis of influencing factors.

Influencing factor VIF TOL
Elevation 1.68 0.60
Slope 1.22 0.82
Aspect 1.02 0.98
Lithology 1.06 0.94
Distance from faults 1.03 0.97
Annual average rainfall 1.51 0.66
Distance from rivers 1.06 0.94
Distance from roads 1.08 0.92
NDVI 1.21 0.82

Table 4. Accuracy of landslide susceptibility assessment results.

Evaluation Precision Recall F1-  Kappa Overall Brier
metric score coefficient accuracy score
RF 0.82 0.82 082 0.64 0.82 0.18
FR-RF 0.89 0.88 0.88 0.77 0.88 0.11

1.0t (a)
0.8}
8
]
2 06
2 04l s
o U il
= -
= e
02l -7 —RF  (AUC=0.90)
// FR-RF (AUC=0.93)
0kLZ . . . .
0 0.2 0.4 0.6 0.8 1.0

False positive rate

They represent the numerical values of various influential
factors in the model, indicating the importance of influential
factors. Fig. 8§ illustrates the SHAP values of the RF model,
with the influential factors arranged in descending order of
importance. The SHAP results indicate that distance from
roads, NDVI, and elevation had the most significant impacts
on landslides, followed by rainfall, slope, aspect, distance
from faults and rivers, and lithology sequentially.

The feature importance analysis based on the RF classifier
provided deeper insights into the key determinants of
landslide susceptibility in the study areca. The feature
importance was assessed using the Gini index. Specifically,
the Gini index of each feature was compared with the average
Gini index of all features. If the Gini index of a feature
exceeds the average, the feature has high importance;
conversely, a lower Gini index corresponds to lower
importance. Among the features, distance from roads proved
to be the most significant influential factor in landslide
prediction, followed by elevation. In contrast, the relatively
low importance of distance from rivers indicates a weak
impact on landslide susceptibility (Fig. 9).

4. Discussion
4.1. Advantages of the proposed model

Currently, the application of machine learning to landslide
susceptibility assessment has been recognized by scientists
worldwide (Shahabi H and Hashim M, 2015). However,
debates persist about the machine learning model with high
assessment precision (Ma ZJ et al., 2021). Precision can be
calculated and assessed based on various factors, leading to a
significant increase in the number of high-precision
assessment models (Cascini L et al., 2015; Lombardo L et al.,
2020).

This study conducted a landslide susceptibility assessment
in the research area using a coupled model that combines
frequency ratio and random forest techniques. The model
performance was evaluated using metrics such as the Receiver
Operating Characteristic (ROC) and Precision-Recall (PR)
curves, resulting in Area Under the Curve (AUC) values of
0.93 and 0.95, indicating high precision in evaluation. The
primary advantages of the coupled FR-RF model are as

1.0

(®)
0.9

0.8

0.7

Precision

06 —RF

(AUC=0.91)
05 ——FR-RF (AUC=0.95)

0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 5. ROC curve (a) and PR curve (b) results.
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Fig. 6. Landslide susceptibility map derived using the coupled FR-
RF model.

Table 5. Statistics of landslides and susceptibility zoning of the
study area.

Landslide Grid Cell proportion Landslides Proportion
susceptibility number (%) number (%)
Very low 5659699 22 8 1
Low 6692799 26 91 14
Moderate 3708865 14 106 16
High 3521133 14 115 18
Very high 6260397 24 326 51
Total 25842893 100 646 100
High
Distance to roads - o~
NDVI
Elevation 8
Annual average rainfall T;
Slope )
Aspect ?‘j
Distance to faults =
Distance to rivers
Lithology
-02 0 02 04 ocLow

SHAP value (impact on model output)
Fig. 7. Honeycomb plot of SHAP values derived using the RF model.

follows: (1) The FR model was employed to conduct an initial
landslide susceptibility assessment, generating random points
in zones with very low and low landslide susceptibility as
negative samples for the RF model. This approach ensured the
diversity of negative samples and significantly reduced the
likelihood that negative samples fell into potential landslide
zones, thereby maximizing the correct selection of negative
samples; (2) The FR values of various influential factors were
used as the input of the RF model, contributing to enhanced
accuracy and predictive capability of landslide susceptibility
assessment. Traditional machine learning methods tend to
neglect the impacts of event frequency on assessment results,

Distance to roads
NDVI

Elevation

Annual average rainfall
Slope

Aspect

Distance to faults
Distance to rivers
Lithology

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Mean (J[SHAP value|) (average impact
on model output magnitude)

Fig. 8. Ranking of influential factors based on SHAP values.
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Mean ([SHAP value|) (average impact
on model output magnitude)

Fig. 9. Heatmap showing feature importance based on the RF clas-
sifier.

whereas this approach comprehensively captured the
variations in the probability of landslides by integrating FRs.

4.2. Model interpretability

The novelty of this study lies in its introduction of the
concept of interpretability. Model interpretability aids
researchers in gaining a deeper understanding of the model
reasoning process and plays a crucial role in its generalization
ability (Linardatos P et al., 2020). Specifically, interpretability
clarifies how the model makes predictions or decisions,
thereby enhancing trust and comprehension. This
understanding helps identify the model limitations or errors in
specific situations, facilitating improvements in model design
and application. Furthermore, interpretability highlights key
factors influencing model performance and enables better
adaptation to new data or different environments, enhancing
its generalization capability. Thus, by improving model
interpretability, the predictive ability and applicability of the
model can be effectively enhanced across various scenarios.

While the random forest model can rank the importance of
influencing factors using the Gini index, it cannot specifically
indicate each factor contribution to individual landslide
events. In contrast, the SHAP algorithm presents the model
overall trends and specific situations from both global and
local perspectives, facilitating a better understanding of the
model behavior within the dataset (Qiu HJ et al., 2024). In
this study, the authors interpreted the model using both the
SHAP algorithm and Gini index calculation methods. The
results indicate that the importance rankings of influencing
factors are generally similar between the two methods, with
distance to roads consistently ranking first. However, factors
with similar impact levels exhibit slight differences in
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ranking, stemming from the fundamental differences in their
principles. The SHAP algorithm evaluates each feature
contribution to predictions, computing the impact of each
feature value on those predictions. Consequently, SHAP
values accurately measure each feature influence on model
predictions, considering both intrinsic importance and the
effect of feature values (Lundberg SM et al, 2020). In
contrast, the Gini index assesses a feature contribution to
decision tree node splits, focusing on how features affect the
construction and predictive capabilities of the model decision
trees. The SHAP algorithm provides a more detailed and
comprehensive assessment of feature importance by
accounting for the specific impact of feature values on
predictions, beyond just the features themselves. This is
particularly valuable for understanding how features influence
predictions under varying conditions and for interpreting
model predictions in decision-making. Thus, if deeper insights
into how each feature value affects individual prediction
instances are needed, SHAP serves as a more explanatory
tool. Conversely, random forest feature importance is more
suitable for large-scale datasets and scenarios requiring
efficient computation of feature importance (Wang HJ et al.,
2024).

Through the SHAP algorithm and random forest feature
importance analysis, this study consistently identifies distance
from roads as the predominant factor influencing landslides in
Longyan City. Zeng TR et al. (2023) considered that landslide
susceptibility is dynamic, particularly in the context of rapid
urban and road network expansion. This dynamic
characteristic is especially evident in the coastal regions in
eastern China, where extensive engineering activities
significantly affect the occurrence of landslides (Dong N et
al., 2018). Zeng TR et al. (2023) investigated the impacts of
road networks on landslide susceptibility, finding that the
density of landslides gradually decreases with increasing
distance from roads. A survey of different road networks from
2016 to 2020 reveals that an increase in the number of roads
led to significantly increased zones with high landslide
susceptibility. Kulsoom I et al. (2023) conducted a landslide
susceptibility assessment of the Karakoram Highway,
revealing the significant impacts of roads on landslides.
Rohan T et al. (2023) found that urbanized areas in the
southern Pennsylvania region tend to be more susceptible to
landslides, indicating a strong correlation between landslides
and the distance from roads. The interpretable model
developed in this study suggests that human activities play a
crucial role in landslides in the area. Road construction
introduces new factors, such as excavation, tunneling, and
filling, which compromise slope stability. Furthermore, once
roads are completed, vibrations from vehicles may lead to
slope  deformation, potentially triggering landslides.
Therefore, in our study area, road expansion is identified as
the primary driving factor for landslides. Consequently, it is
recommended that local governments prioritize slope
protection measures during road construction to mitigate the
risk of future landslides.

SHAP is an effective algorithm for interpreting landslide
susceptibility assessment results, capable of measuring the
relative importance and interactions of various influencing
factors. This capability enables researchers to gain a
comprehensive  understanding  of  the  distribution
characteristics of each factor during the modeling process, as
well as the patterns of landslide occurrences. Consequently, it
enhances the credibility of machine learning algorithms and
provides valuable insights for interpretability research. I
believe SHAP will play an indispensable role in the future of
machine learning studies. However, this study has some
limitations. For instance, in addition to the two types of
visualizations used in this paper, the SHAP algorithm also
encompasses various other visual methods, such as scatter
plots and heatmaps. Future research could further explore the
significance of these visualizations in enhancing models
explanations, thereby establishing more reliable interpretable
models. Moreover, this paper introduces SHAP as one
algorithm for model interpretation; future studies could
investigate other algorithms for broaden the scope of model
explanation.

4.3. Uncertainty and future enhancement
susceptibility assessment

of landslide

The spatial heterogeneity of influential factors like
geological environments can result in varying predictive
capacities of a model across different study areas. Kulsoom I
et al. (2023) assessed the landslide susceptibility of the
Karakoram Highway using five models: extreme gradient
boosting (XGBoost), RF, artificial neural network (ANN),
Naive Bayes (NB), and K-nearest neighbors (KNN). They
compared the accuracy of these models using the ROC curve,
obtaining AUC values of 99.74, 99.36, 98.82, 98.46, and
92.43, respectively, suggesting that the XGBoost model has
the highest accuracy. Similarly, Yao JM et al. (2023)
investigated the upper reaches of the Jinsha River using four
machine learning models, obtaining AUC values of 90.767
(RF), 90.24 (XGBoost), 86.939 (logistic regression), and
80.136 (SVM), suggesting the RF's superior assessment
accuracy. Therefore, regarding the model generalization
capability, applying RF or deep learning techniques in
landslide susceptibility assessment requires further in-depth
research (Chen YS et al., 2021). Consequently, it proves
challenging to develop a model with a high generalization
capability that consistently maintains optimal performance
across various study areas (Zeng TR et al., 2023).

In recent years, deep learning techniques have
demonstrated remarkable effectiveness in assessing landslide
susceptibility (Ullah K et al., 2022; Prakash N et al., 2020;
Dou J et al., 2020). By efficiently extracting multidimensional
feature information and capturing complex nonlinear
relationships, these methods have significantly improved the
accuracy of landslide predictions. Notably, Convolutional
Neural Networks (CNNs) and Long Short-Term Memory
networks (LSTMs) excel in autonomously learning critical


https://doi.org/10.31035/cg2024123
https://doi.org/10.31035/cg2024123
https://doi.org/10.31035/cg2024123
https://doi.org/10.31035/cg2024123
https://doi.org/10.31035/cg2024123
https://doi.org/10.31035/cg2024123
https://doi.org/10.31035/cg2024123
https://doi.org/10.31035/cg2024123
https://doi.org/10.31035/cg2024123
https://doi.org/10.31035/cg2024123
https://doi.org/10.31035/cg2024123

12 Lu et al. / China Geology 7 (2024) 1-14

features from large datasets, minimizing reliance on manual
feature selection, and adeptly processing unstructured data. As
a result, deep learning is emerging as an indispensable tool for
enhancing landslide prediction accuracy and bolstering
disaster risk reduction, particularly in complex geological
settings where it surpasses traditional approaches. The
ongoing advancement and refinement of deep learning
techniques hold great promise for developing more precise
and reliable tools for landslide susceptibility assessment,
thereby driving progress in disaster prevention and mitigation
technologies.

Coupled models present promising avenues for achieving
more robust predictions. This study explores the integration of
traditional and machine-learning models. Future research
could delve into the coupling of different machine learning
techniques. Moreover, coupled models based on deep learning
warrant more research efforts to enhance the accuracy and
precision of landslide susceptibility assessment.

5. Conclusions

In this study, nine influential factors related to
topography, geology, meteorology and hydrology, human
activities, and vegetation cover were extracted from multiple
data sources. An initial landslide susceptibility assessment of
the study area was conducted using a FR model. Based on the
assessment results, non-landslide points were randomly
selected from zones with very low and low landslide
susceptibility as negative samples. Then, the landslide
susceptibility in the study area was assessed using the coupled
FR-RF model. Finally, the model's explanatory power was
analyzed using the SHAP algorithm and the Gini index. Key
findings from this study are as follows:

(i) The evaluation metrics of the coupled model are
significantly higher than those of the random forest model,
demonstrating excellent classification ability. The landslide
susceptibility map reveals that 69% of the landslides are
distributed in zones with very high and high landslide
susceptibility, indicating the high consistency of the map.

(ii) Based on the assessment results of the coupled FR-RF
model, the study area can be divided into five susceptibility
levels: very low, low, moderate, high, and very high. A higher
susceptibility level corresponds to a higher likelihood of
landslides, aligning with the actual conditions. This provides
crucial spatial information for the early warning and response
efforts of geologic hazards.

(iii) SHAP wvalues effectively reflect the mechanisms
behind the landslide susceptibility assessment of the coupled
FR-RF model. Dominant factors influencing landslide
susceptibility in the study area include distance from roads,
NDVI, and elevation. It is recommended that local
governments prioritize slope protection measures during road
construction to prevent potential landslides.

(iv) Despite some results achieved, this study encountered
some challenges. Subsequent research could integrate more
new technologies and finer-scale spatial data to enhance the
predictive and generalization capabilities of models.
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